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Abstract: Large, spatially explicit forest plots have the potential to address currently understudied
aspects of fire ecology and management, including the validation of physics-based fire behavior
models and next-generation fire effects models. Pre-fire forest structures, fire-mediated mortality,
and post-fire forest development can be examined in a spatial context, and value can be added to
current multidisciplinary approaches by adding a long-term perspective. Here we propose that the
fire science community begin to build a collaborative network of fire-related large forest dynamics
plots to examine explicit spatial patterns of surface fuels, tree mortality, and post-fire regeneration
throughout ecosystems with frequent-fire forests.
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One of the central challenges in fire ecology and management is to validate next-generation
models at ecologically and operationally relevant scales. This includes physics-based fire behavior
models and physiologically informed fire effects models, as well as integration of outputs from such
models with measurements of fire effects and post-fire ecosystem development. Meeting this challenge
will require large field sites in which surface and canopy fuels are mapped in three-dimensional (3D)
space at high resolution [1] and where medium- and long-term fire effects on community composition,
structure, and fuel accumulation are measured. Here, we suggest that large, spatially explicit forest
plots modeled after the Smithsonian ForestGEO network [2] are a key investment needed to meet one
of the most pressing research challenges in fire science.

The high-frequency, low- and moderate-severity fire regime forest types are the most appropriate
ecosystems for investment in large, spatially explicit forest plots. Recent modeling studies illustrate
the effects of fine-scale differences in stand structure on fire behavior (e.g., [3]), with the finding that
aggregated fuel patterns (i.e., arising from spatially aggregated tree patterns) increase the variability
of fire behavior. These initial results suggest a promising pathway for testing conceptual models for
forest dynamics and the generation of spatial heterogeneity in frequent-fire forests [4,5]), and for the
design and evaluation of fuel reduction, restoration, and climate change adaptation treatments in
frequent-fire forests [6,7].

Large plots in which pre-fire measurements are comprehensive and long-term fire effects
are monitored can fill gaps in fire research. Potential improvements extend from the scale of
ecophysiological measurements of fire on seedlings [8] to socio-ecological “firescapes” [9] and to
large landscapes [10].
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Figure 1. Spatial variation in burn severity at multiple scales within the Yosemite Forest Dynamics 
Plot. The YFDP contains 238 contiguous Landsat pixels. There were 24,305 immediate fire 
mortalities, with 7,408 trees surviving two years post-fire within these 238 Landsat pixels. Fire 
severity measured by the differenced Normalized Burn Ratio (dNBR) [11] (unchanged [dark green], 
<41; 41 ≤ low severity [light green] < 176; 176 ≤ moderate severity [yellow] < 367; high severity [red] 
≥367). Patches of unburned ground surface ≥1 m2 (mapped six months post-fire) shown in medium 
green. One-year post-fire tree mortality per Landsat pixel by tree density and tree basal area is 
shown, but the relationship between dNBR spectral change does not have a simple correlation with 
observed mortality. 

We suggest that large (≥10 ha) forest dynamics plots can help answer some unaddressed 
questions in fire ecology. Example phenomena include the spatial aggregation of tree mortality 
events, the spatial distribution of fuel strata (e.g., surface fuels [12], shrubs [13,14], and coarse woody 
debris) and the consequences of burn heterogeneity for post-fire succession [15] and snow 
hydrology [16] at a wide range of spatial scales (Figure 1).  

Figure 1. Spatial variation in burn severity at multiple scales within the Yosemite Forest Dynamics Plot.
The YFDP contains 238 contiguous Landsat pixels. There were 24,305 immediate fire mortalities, with
7408 trees surviving two years post-fire within these 238 Landsat pixels. Fire severity measured by
the differenced Normalized Burn Ratio (dNBR) [11] (unchanged [dark green], <41; 41 ≤ low severity
[light green] < 176; 176 ≤ moderate severity [yellow] < 367; high severity [red] ≥367). Patches of
unburned ground surface ≥1 m2 (mapped six months post-fire) shown in medium green. One-year
post-fire tree mortality per Landsat pixel by tree density and tree basal area is shown, but the
relationship between dNBR spectral change does not have a simple correlation with observed mortality.

We suggest that large (≥10 ha) forest dynamics plots can help answer some unaddressed questions
in fire ecology. Example phenomena include the spatial aggregation of tree mortality events, the spatial
distribution of fuel strata (e.g., surface fuels [12], shrubs [13,14], and coarse woody debris) and the
consequences of burn heterogeneity for post-fire succession [15] and snow hydrology [16] at a wide
range of spatial scales (Figure 1).

Fire is a dominant governing process of spatial patterns of tree mortality and residual forest
spatial pattern [17], either directly as a result of physical damage to trees or indirectly as a predisposing
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agent to other biotic or abiotic agents of mortality [18,19]. Fine-scale spatial pattern plays an important
role in mediating post-fire effects, either through density-dependent mortality or aggregated post-fire
forest development [20,21]. The importance of spatial heterogeneity to the correct calculation of
landscape carbon [22–24] and remnant forest patches (e.g., refugia [25–28]) has been well established,
but the spatial distribution of fire-caused mortality remains understudied. When spatial patterns of
fire mortality are considered, they are usually inferred from Landsat-derived spectral changes at a
900 m2 grain [29–32], but this scale is almost certainly too coarse to determine causes and consequences
of tree mortality (Figure 1). The reason that fine-scale spatially explicit post-fire mortality has been
understudied is the requirement for a study site of sufficient size where the trees and fuel have been
mapped pre-fire, where the trees’ fate can be determined after fire, and where measurements of tree
mortality (or survival) are repeated post-fire. Examining spatial neighborhoods of tree mortality and
the heterogeneity of fire effects requires large, mapped plots, almost certainly >1 ha [33], with sizes
≥10 ha more likely to elucidate subtle spatially explicit phenomena [34] and to provide information
at operationally relevant scales [35]. There has been considerable success with 4 ha plots [24,36],
which seem to constitute a practical minimum from the perspective of the requirements of point
pattern analysis [37] or actual forest structural heterogeneity [38].

The Smithsonian Forest Global Earth Observatory (ForestGEO, http://www.ctfs.si.edu [2,39])
provides a framework for establishing large forest plots and using spatially explicit data across
diverse forest types. As of 2017, there are 63 plots worldwide, 55 of them ≥10 ha. In the United
States, four plots are co-located with the National Ecological Observation Network (NEON): at the
Smithsonian Conservation Biology Institute, Virginia [40], the Smithsonian Environmental Research
Center, Maryland [41], Harvard Forest, Massachusetts [42], and Wind River, Washington [43]. However,
these plots are unlikely to burn (unless in a high-severity, stand replacement fire). Globally, three of the
ForestGEO plots have experienced some recent low- to moderate-severity fire: Mudumalai, India [44],
Huai Kha Khaeng, Thailand [45], and Yosemite, California [46]. The extent of these 63 plots makes
them ideal for studying the effects of disturbance of all kinds—from large treefall to hurricanes and
fire—and the uniform field protocols [47] and data representations [48] can facilitate collaborations.
Of these ForestGEO plots, the Yosemite Forest Dynamics Plot (YFDP; 25.6 ha [46]) is located on a
generally north facing slope in the lower mixed-conifer forests of Yosemite National Park (pre-1900 fire
return interval of 29.5 years [49]). The YFDP experienced a relatively characteristic burn for this
vegetation type (Figure 1) when it was burned in an unmanaged backfire [14] set in the path of the Rim
Fire of 2013 [50]. Along with data from spatial pattern, these large forest plots provide high numbers
of mortalities (Table 1) useful for calibrating fire effects models [51].

Table 1. Background levels of mortality in the Yosemite Forest Dynamics Plots and immediate and
delayed consequences of fire. The Rim Fire occurred in August–September 2013, and field sampling
took place in May–June of each year. The 25.6 ha extent of the plot allows for statistically significant
inference of the effects on sub-populations of concern, such as large-diameter trees.

Diameter Class (cm)
Mortalities (Stems)

Pre-Fire Fire Post-Fire
2011 2012 2013 2014 2015 2016 2017

1 cm ≤ dbh < 10 cm 340 341 463 18,698 665 128 84
10 cm ≤ dbh < 30 cm 173 145 121 5241 1644 540 273
30 cm ≤ dbh < 60 cm 18 28 19 319 285 307 192
60 cm ≤ dbh < 90 cm 6 7 6 23 27 87 56

dbh ≥ 90 cm 5 11 4 24 17 130 64
Total 542 532 613 24,305 2638 1192 669

Implicit in suggestions for large plots is the concomitant suggestion for collaborating across
multiple fire science disciplines, with respect to sampling designs, as well as analysis and publication
of the large data sets generated. The success of the multidisciplinary RxCADRE study [35] provides
a template for incorporating large, spatially explicit, long-term forest plots into fire science research.

http://www.ctfs.si.edu
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We envision combining the large spatial extent, high-resolution, and long-term approach of the
ForestGEO network [2] with the multidisciplinary approach and focus on generating data to validate
process-based models of RxCADRE [35]. Logistical constraints make it unlikely that any one principal
investigator would manage more than 2–3 large plots, and the strengths of the approach are strongest
with a culture of cooperation [2,35]. Additionally, the time-appropriate release of uniformly collected
data in purely open access venues would allow better synthesis across forest types.

The Western Forest Initiative program (http://westernforestinitiative.org) has released data on
fire effects [52], shrub allometry [53] and multiple consistently produced remote sensing metrics, [54,55]
as well as portions of the tree spatial data [24]. The existence of one such large fire effects plot in
the Western United States may encourage others to establish compatible plots in other forest types,
which together would provide a foundation for advancing fire science and addressing currently
unsolved problems.
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